Image description

Published yearly: 

4 Issues


ISSN: 2320-964X (Online) 

ISSN: 2320-7817  (Print)



Dr. Santosh Pawar 




Int. Journal of Life Sciences, 2016; 4(4):539- 546   |    Available online, February 01, 2017

Encapsulation of Lactic acid bacteria in calcium alginate beads for higher bacteriocin production



Khandare SS1 * and   Patil SD2   



1 Department of Microbiology, J. B. College of Science, Wardha -442001, M. S. , India

2Department of Microbiology and Biotechnology,  Shri Shivaji Science College, Amravati – 444 603, M. S. , India

 *Corresponding author : Email :


Received: 04.10.2016   |      Accepted: 04.11.2016       |         Published : 01.02.2017

Lactic acid bacteria (LAB) strains LAB -A, LAB -B and LAB-C isolated from batter of idli, very popular fermented food of south India and identified to species level using 16 S rRNA sequencing as  Pediococcus acidilactici CSI29MX, Pediococcus parvulus MF 233 and Pediococcus pentosaceus QN1D  respectively. All the three strains produced bacteriocins that inhibited Gram positive food borne pathogen Staphylococcus aureus and Gram negative Pseudomonas aeruginosa. LAB strains were encapsulated in calcium alginate for possible higher bacteriocin production. After 72 h encapsulated LAB demonstrated remarkable increase in bacteriocin production with 2600 and 2800AU/ml tested against S.aureus and P.aeruginosa respectively and viable cell number of encapsulated LAB increased from 4.5 x106 to 6.3 x106/ml during 24 to 72 h as compared to free cells with 1100 AU/ml and 1000AU/ml, against  S.aureus and P.aeruginosa respectively and decreased remarkably with free cells from 4.2 x106 to 1.2 x106/ml after 24 h. Encapsulated L. acidophilus MTCC 10307 , standard strain exhibited 2000 AU/ml and 2200 AU/ml compared to free cells with 1100 and 900 AU/ml. The isolates Pediococcus acidilactici CSI29MX, Pediococcus parvulus MF 233 and Pediococcus pentosaceus QN1D  showed higher potential for bacteriocin production than L. acidophilus MTCC 10307. 


Key words: P. acidilactici CSI29MX, P. parvulus MF 233, P. pentosaceus QN1D, Encapsulation, Bacteriocin production, food borne pathogens



Editor: Dr. Arvind Chavhan


Cite this article as:

Khandare SS and   Patil SD (2016) Encapsulation of Lactic acid bacteria in calcium alginate beads for higher bacteriocin production, International J. of Life Sciences, 4 (4):539-546.



Conflicts of interest: The authors stated that no conflicts of interest.



Copyright: © 2016 | Author(s), This is an open access article under the terms of the Creative Commons Attribution-Non-Commercial - No Derivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.


Anal AK and Singh H (2007) Recent advances in microencapsulation of probiotics for Industrial  applications and targeted delivery. Trends Food Sci. Tech., 18: 240-251.

Barbosa MS, Todorov SD, Jurkiewicz CH and  Bernadette DGM Franco (2015) Bacteriocin production     by Lactobacillus curvatus MBSa2 entrapped in calcium alginate during ripening of salami for control of Listeria monocytogenes. Food Control., 47: 147-153.

Brachkova MI, Duarte MA and  Pinto JF (2010) Preservation of viability and antibacterial activity of Lactobacillus spp. in calcium alginate beads. European J. Pharma. Sci., 41: 589-596.

Cook MT, Tzortzis G, Charalampopoulos D and Khutoryanskiy VV (2012) Microencapsulation of probiotics for gastrointestinal delivery. J. Control Release., 162 : 56 - 67.

Deegan LH, Cotter PD , Hill C, Ross P ( 2006)  Bacteriocins  Biological tool for biopreservation and shelf life extention.  Int. dairy J .,16: 1058-1071.

Frazier    WC and  Frazier DC (2008) Food Microbiology 4 thEd. Tata McGraw Hill Publishing company Ltd. New Delhi.

Idris A and Suzana W (2006) Effect of sodium alginate concentration, bead diameter, initial pH and temperature on lactic acid production from pineapple waste using immobilized Lactobacillus delbrueckii. Process Biochem., 41: 1117-1123.

Ivanova E, Valentina C, Iskra I, Xavier D and  Denis P  (2002)  Encapsulation of lactic acid bacteria in calcium alginate beads for bacteriocin production. J. culture collection., 3: 53-58.

Kailasapathy K (2002) Microencapsulation of probiotic bacteria: Technology and potential  applications. Curr. Issues Intest. Microbiol.,  3: 39-48.

Kaiser     Al and Montville TJ (1996) Purification of the bacteriocin bavaricin MN and characterization of its mode of action against Listeria monocytogenes Scott A cells and lipid vesicles. Apl. Environ. Microbiol., 62: 4529– 4535.

Kong  HJ,  Wong  E  and   Mooney DJ (2003)  Independent control of rigidity and toughness of polymeric hydrogels. Macromolecules., 36 : 4582–88.

Magnusson J and  Schnurer J (2001) Lactobacillus coryniformis subsp coryniformis strain Si3 produces abroad spectrum proteinaceous antifungal compound. Appl. Environ. Microbiol., 67:  1-5.

Martinsen A, Skjak-Braek G and  Smidsrod O (1989) Alginate as immobilization material                correalation between chemical and physical properties of alginate gel beads. Biotechnol. Bioeng., 33:79–89.

Melvik JE and Dornish M (2004) Focus on biotechnology. Vol 8a:.Dordrecht: Kluwer Academic Publishers.

Mills S, Stanton C, Hill C and  Ross RP (2011)  New developments and applications of bacteriocin and peptides in foods. Annual Reviews Food Sci. Technol., 2: 299-329.

Muthukumarasamy P and Holley RA (2006) Microbiological and sensory quality of dry fermented sausages containingalginate microencapsulated Lactobacillus reuteri. Int. J. Food Microbiol.,111: 164-169.

Narita J, Nakahara S, Fukuda H and   Kondo  A (2004) Efficient production of L- (þ)-lactic acid from raw starch by Streptococcus bovis 148. J.  Biosci. Bioeng., 97:423-425.

Nilsang S (2010) Bacteriocin production by lactic acid bacteria encapsulated in calcium alginate beads. KKU. Res. J.,15 (9):889 – 896.

Ortakci  F and Sert  S  (2012) Stability of free and encapsulated Lactobacillus acidophilus ATCC 44356    in yogurt and in an artificial human gastric digestion system. J.  Dairy Science., 95:6918-6925.

Rao C, Prakasham R, Rao A and Yadav J (2008) Production of L ( +) Lactic acid by Lactobacillus delbruckii immobilized in functionalized Alginate Matrices. World J. Microbiol. Biotechnol.,24: 1411 – 1415.

Ross RP, Morgan S and Hill C (2002) Preservation and fermentation: past present and future. Int. J.  Food Microbio.,l 79: 3-16.

Roy PH (1997) Dissemination of antibiotic resistance. Med.  Sci., 13: 927-933.

Saavedra L, Minahk C, Holgado AP, De  R and  Sesma F (2004)  Enhancement of the enterocin CRL 35 activity by a synthetic peptide derived from the NH2-terminal sequence. Antimicrob. Agents.Chemother., 48: 2778-2781.

Sarika AR, Lipton AP and  Aishwarya MS( 2012) Comparative assessment of bacteriocin production in free and immobilized Lactobacillus plantarum MTCC B1746  and Lactococcus lactis MTCC B440. J. Appl. Sci. Research., 8: 2197-2202.

Scannell AGM, Hill C, Ross RP, Marx S, Hartmeier W and Arendt EK (2000) Continuous production of lacticin 3147 and nisin using cells immobilized in calcium alginate.J.Appl.Microbiol.,89:573-579.

Shamekhi F, Shuhaimi M, Ariff A and Manap YA (2013) Cell viability of microencapsulated Bifidobacterium animalis subsp. lactis under freeze-drying, storage and gastrointestinal tract simulation  conditions. Folia Microbiologica., 58 : 91-101.

Shah, N (2002) The exopolysaccharides production by starter cultures and their influence on textural characteristics of fermented milks. Symposium on New Developments in Technology of fermented Milks. Int. Dairy Federation, Comwell Scanticon, Kolding, Denmark. 3rd June 2002.

Todorov SD, LeBlanc JG and  Franco BDGM (2012) Evaluation of the probiotic potential and effect of encapsulation on survival for Lactobacillus plantarum ST16Pa isolated from papaya. World J. Microb. Biot., 28: 973-984.

Yoneyama H and Katsumata R (2006) Antibiotic resistance in bacteria and its future for novel                 antibiotic development.  Biosci. Biotechnol. Biochem., 70 :1060-1075.

Zain NAM, Suhaimi MS and  Idris A (2011) Development and modification of PVA-alginate as a suitable immobilization matrix. Processs. Biochem., 46: 2122-2129.

Zou Y, Lee HY, Seo YC and  Ahn J (2012) Enhanced antimicrobial activity of nisin-loaded liposomal snanoparticles against foodborne pathogens. J. Food. Sci., 77:165-170.







    Origin & Evolution

    Print ISSN : 2320-7817 

    Online ISSN:2320-964X


    46, Guruwandan, Jawahar Nagar, 

    VMV Road, Amravati- 444604

    Maharashtra, India.

    Tel  + 91- 9970559438  |   9420775527  

    Email: |